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Abstract

The classical results of compressive strength in ®ber reinforced composites are brie¯y reviewed. The

microbuckling analysis by Rosen (1965) and the Argon-Budiansky analysis for kink band formation (Argon, 1972;
Budiansky 1983) are discussed and their results are rederived by using a new generalized Timoshenko beam model
which is developed for a two-dimensional periodic matrix±®ber±matrix laminate. Introducing a `shear hinge' to

simulate a kink band and using the method of split rigidities it is shown that not only an initial ®ber misalignment
but also any misalignment in the loading system can a�ect the critical stress for kinking. A new mechanism based
on shear instability of matrix is proposed for kink band formation and a simple formula is then derived to predict
the kink band angle. Finally, a criterion for matrix yielding combining axial compressive stress and transverse shear

perturbation is applied to modify the Argon±Budiansky kinking formula. # 2000 Published by Elsevier Science
Ltd. All rights reserved.

1. Introduction

The compressive response of composite materials with long continuous ®bers has been a subject of
intense research over the past thirty years. It is well recognized that the compressive failure of these
composites is usually caused by localized buckling of ®bers. This failure process is referred to as
microbuckling or kinking depending on the mode of local failure. Therefore, the study of this topic is
divided into two branches: ®ber microbuckling models (Rosen, 1965; Chung and Testa, 1968; Wang,
1978; Maewal, 1980; Hahn and Williams, 1986; Waas et al., 1990; Xu and Reifsnider, 1993, 1994;
Tomblin et al., 1997, etc.) and kink band formation models (Argon, 1972; Budiansky, 1983; Steif, 1990;
Budiansky and Fleck, 1993; Jensen and Christo�ersen, 1997, etc.). Although some researches (Hahn and
Williams, 1986; Chaudhuri, 1991) have shown that microbuckling and kink band type failure modes
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could be incorporated into one continuing theme, these two methods are still treated as parallel models
(Schultheisz and Waas, 1996; Fleck, 1997).

A substantial body of experimental and theoretical results has enriched our knowledge of this topic.
However some fundamental issues still remain open:

1. The well-known formula (Rosen, 1965) relating the critical stress for microbuckling to the axial shear
modulus of a composite (sc

1 � G c
13) has not clearly been proven by a microbuckling analysis.

2. The Argon±Budiansky kink band analysis (Argon, 1972; Budiansky, 1983) can give a reasonable
kinking stress estimate by introducing ®ber misalignment of about 38 (Jelf and Fleck, 1992).
However, as Deve (1997) has shown, realistic average misalignment angles are nearly zero. Some
recent experimental observations (Schadler, 1998) seem to suggest that ®ber misalignment may not
even be necessary for the formation of kink bands.

3. Kink bands are experimentally observed to be inclined to the transverse direction (as recently
reviewed by Schultheisz and Waas, 1996), and it is widely believed that a proper analysis of kink
band angles is the key to understanding the kinking mechanism. The existing theories do not
adequately predict the observed kink band angles.

4. Recent experiments (Soutis and Turkmen, 1995; Kyriakides et al., 1995; Daniel et al., 1996; Vogler
and Kyriakides, 1997; Kyriakides and Ru�, 1997; Soutis, 1997; Moran and Shih, 1998) have shown
that the axial compressive strain at the point of kink band formation is about 1%, which is of the
same order of magnitude as a typical shear yield strain for a polymeric matrix. Therefore, it appears
that the e�ect of the axial compressive stress on matrix yielding should be accounted for in the
analysis of kink band formation.

The issues listed above will be addressed in this paper. The contents of the paper are organized as
follows. In Section 2, a short literature review is given. In Section 3, a microbuckling approach is
developed considering elastic bending and shear of the ®bers and elastic shear of the matrix. This
approach appears to be the ®rst to apply the generalized Timoshenko beam theory to obtain the
generalized Rosen formula. In Section 4, the initial transverse misalignment of ®bers is introduced in the
generalized Timoshenko beam model to bridge the microbuckling model and the Argon±Budiansky kink
band model. In Section 5, a mechanism (called `shear hinge' here) is proposed to give new
interpretations to the Rosen and Argon±Budiansky formulas. In Section 6, a new theory of kink band
formation based on an assumption of shear instability of matrix in compression is proposed and a
simple expression for kink band angle is obtained which appears for the ®rst time to give a reasonable
prediction. In Section 7, the e�ect of axial compressive stress in matrix on kink band formation is
discussed. Using a shear stress±strain relationship in the microbuckling model and applying the Tresca
criterion a modi®ed Argon±Budiansky kink band analysis is developed in which the kink band stress
without ®ber misalignment is included.

2. Review of microbuckling and kinking in composites

General reviews by Camponeschi (1991), Schultheisz and Waas (1996) and Fleck (1997) provide a
large number of references to this subject. A brief review related to our topic is given below.

2.1. Microbuckling models

Rosen (1965) assumed two possible buckling modes: an extensional mode and a shear mode, as shown
in Fig. 1. In composites of a signi®cant ®ber volume fraction, e.g., vf > 0:3, the shear mode governs the
compressive strength (Fleck, 1997). However, higher-order models (Chung and Testa, 1968; Zhang and
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Latour, 1994) have shown that the shear mode is favored at all values of ®ber volume fraction and the
predictions of the two modes di�er only slightly in the low ®ber volume fraction range.

The compressive strength of composites with sti� ®bers is given by Rosen (1965) as

sc
1 �

Gm

1ÿ vf
�2:1�

where superscripts `m', `f' and `c' refer to the matrix, ®ber and composite, respectively. The Rosen result
for the case of in®nite ®ber shear modulus can be written as

sc
1 � G c

13 �2:2�

As widely quoted (e.g., Fleck, 1997), the prediction by this expression is often several times higher than
the experimental values. Many e�orts have been made to modify Rosen's model by accounting for
initial ®ber misalignment, partial interfacial slippage and nonlinear shear sti�ness (Wang, 1978; Hahn
and Williams, 1986; Yeh and Teply, 1988; Stief, 1988; Chaudhuri, 1991; Sun and Jun, 1993; Xu and
Reifsnider, 1993, 1994; Harberle and Matthews, 1994; Williams and Cairns, 1994; Chung and Weitsman,
1994, 1995; Tomblin et al., 1997).

2.2. Kink band formation models

Argon (1972) recognized that the initial ®ber misalignment angle, f0, would have a large degrading
e�ect on the compressive strength, and for a perfectly plastic composite having interlaminar shear
strength, k, he showed that an additional rotation cannot develop until the critical compressive stress,

sc
1 �

k

f0

�2:3�

is reached, which is independent of the volume fraction of the reinforcing element. Budiansky (1983)
extended (without proof) Argon's expression to a more general expression that recovers Rosen's result as

sc
1 �

kc

gc
y � f0

� G c
13

1� f0=gc
y

�2:4�

where kc is the shear yield stress of the composite, and the yield strain is de®ned as gc
y � kc=G c

13. Budiansky
and Fleck (1993) provided a more general formula through traction continuity on the kink band boundary:

Fig. 1. Two modes in classical microbuckling analysis.
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s01 ÿ 2t013 tan b � t13 ÿ t013 � s3 tanb
f� f0

�2:5�

connecting the applied stresses s01, t
0
13 the kink band rotation angle, f, and the stresses t13 and s3 that

develop in the kink band. In the case of zero kink band angle (b � 0) and a pure compressive stress
(t013 � 0), eqn (2.5) reduces to eqn (2.4) with the criterion, t13 � kc. Fleck (1997) has also analyzed the
e�ects of imperfection size and shape. Jelf and Fleck (1992) found that sc

1 is linear in km, the shear yield
stress of the matrix, and suggested that the misalignment angle f0 in eqn (2.3) is about 38. Budiansky and
Fleck (1993) found that smaller ®ber misalignment angles, of the order of 28, are given by eqn (2.4).
Christo�ersen and Jensen (1996) and Jensen and Christo�ersen (1997) brought the kink band analysis into
a standard framework for analyzing localized deformation, and their work regarded kink band formation
and shear band formation as two equivalent failure mechanisms. However, in the kink band analysis the
®bers are usually assumed to be rigid with respect to longitudinal straining, and have the e�ect of shielding
the matrix from axial compressive stress (Budiansky and Fleck, 1993).

2.3. Kink band angle

Budiansky (1983) provided a micromechanics model for kink band angle b through an approximate
computation of the stress for kink band formation for two hypothetical cases of initial short-wave and
long-wave imperfections. His expression for long-wave imperfection (similar to the short-wave
imperfection case) gives the following result

sc
1 � G c

13 ÿ E c
3 tan2 b �2:6�

where E c
3 is the composite Young's modulus in the transverse direction. Chaudhuri (1991) found a result

that is coincidentally identical to eqn (2.6) by accounting for initial ®ber misalignment in his
microbuckling analysis. Equation (2.6) can predict realistic values for the kink band angle if the
compressive strength is known. However, as Chaudhuri (1991) pointed out, eqn (2.6) is in contradiction
to the extension of the Budiansky (1983) relationship in an elastic microbuckling analysis, which gives,

sc
1 � G c

13 � E c
3 tan2 b �2:7�

Budiansky (1983) himself has recognized that eqn (2.7) gives b � 0 as the critical angle for kink band
formation. Steif (1990) used a very di�erent approach based on a comparison of the energies of the
kinked and unkinked con®gurations, and he found that the critical stress could approach the minimum
as b approaches 458. But it is observed experimentally that kink bands are inclined typically at
b � 2080308 (e.g., Moran et al., 1995; Schultheisz and Waas, 1996). Recently, the kink band angle
problem has drawn considerable interest both in analytical and experimental investigations (Kyriakides
et al., 1995; Schapery, 1995; Daniel et al., 1996; Vogler and Kyriakides, 1997; Kyriakides and Ru�,
1997; Jensen and Christo�ersen, 1997; Christensen and DeTeresa, 1997; Moran and Shih, 1998; Hsu et
al., 1998). However, as pointed out by Budiansky et al. (1998), easy recipes for the kink band angle b
are not yet available.

3. Microbuckling analysis of perfect composites

As mentioned above, in the elastic microbuckling analyses the two simplest ®ber buckling modes
commonly assumed have been the extensional mode and the shear mode (Rosen, 1965; Chung and
Testa, 1968; Stief, 1987), as shown in Fig. 1(a) and (b), respectively. A representative element of a two-
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dimensional model of unit thickness consists of a long ®ber embedded in a homogeneous matrix. It is
assumed that the deformation is small and the properties of the constituent materials are isotropic and
linearly elastic. A possible instability in the matrix material itself is excluded. Further details of the
classical microbuckling analysis are given in the Appendix.

Only the shear mode is considered in this paper, as shown in Fig. 2. To account for shear
deformation e�ects in the composite we adopt the Timoshenko shear deformation beam theory for the
®ber and treat the matrix as an elastic foundation. The potential energy of the Timoshenko beam with
distributed loads is given by,

Pf � Df

2

�L
0

�
dcf

dx

�2

dx� G fAr

2a

�L
0

�
dwf

dx
ÿ cr

�2

dxÿ P f

2

�L
0

�
dwf

dx

�2

dx

ÿ
�L
0

ÿ
mfcf � qfwf

�
dxÿMfcf jL0 ÿ V fwf jL0

�3:1�

where w is the vertical displacement of the ®ber neutral axis, D is the bending sti�ness about the y-axis,
which for a beam is D=EI, I being the second moment of the cross-sectional area about the y-axis, and
for a plate D � EI=�1ÿ n12n21�, where n12 and n21 are the major and minor Poisson's ratios in the x±y
plane, respectively; c is the angular rotation of the planar cross section, A is the cross-sectional area
which is equal to the height H (thickness equals unity), a is the shear correction factor (in the classical
beam theory a � 1:2 for a rectangular cross section and a � 1:11 for a circular cross section); L is the
®ber length, P is the axial compressive force, MjL0 are end bending moments, VjL0 are end vertical
constraint forces; q is the applied distributed transverse force and m is the distributed bending moment
due to the distributed shear stress on the ®ber surface. If the distributed loads are not taken into
account, the expression will reduce to the classical result (Hu, 1984).

The uniform shear strain of the ®ber according to the Timoshenko beam theory is written as

gf
13 �

dwf

dx
ÿ cf �3:2�

The shear strain ®eld of the matrix is also assumed to be uniform, as shown in Fig. 2. Due to the
displacement continuity at the interface between the ®ber and the matrix, the angular rotation of the
matrix corresponding to the angular rotation of the ®ber planar cross section is given by,

Fig. 2. Shear mode in a generalized Timoshenko beam model.
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cm � ÿ@u
m

@z
� ÿ H f

2Hm
cf � ÿ vf

1ÿ vf
cf �3:3�

where the ®ber volume fraction is given by,

vf � H f

H f � 2Hm
�3:4�

The total matrix shear strain is given by,

gm
13 �

@wm

@x
� @u

m

@z
� dwf

dx
� vfcf

1ÿ vf
� dwf

dx
ÿ cm �3:5�

The uniform shear stress in the ®ber is

tf
13 � G fgf

13 � G f

�
dwf

dx
ÿ cf

�
�3:6�

i.e., a � 1, and the shear stress in the matrix is also uniform and is given by,

tm
13 � Gmgm

13 �
Gm

1ÿ vf

dwf

dx
ÿ vfGm

1ÿ uf

�
dwf

dx
ÿ cf

�
�3:7�

Since traction is continuous on the ®ber/matrix interface, tf
13 � tm

13, and we have,

tf
13 � tm

13 �
G fGm

�1ÿ vf �G f � vfGm

dwf

dx
� G c

13

dwf

dx
�3:8�

and

cf � �1ÿ vf ��G f ÿ Gm�
�1ÿ vf �G f � vfGm

dw f

dx
�3:9�

Here, the e�ective shear modulus is de®ned in accordance with the `inverse rule of mixtures' as

G c
13 �

�
vf

G f
� 1ÿ vf

Gm

�ÿ1
�3:10�

The above result uses the same assumption as in the slab model. The assumption of the uniform matrix
shear deformation in eqn (3.5) is a strong constraint in this analysis and will be discussed in Section 7.
The shear stress distribution in the classical Timoshenko beam is not used here because the periodic
matrix±®ber±matrix structure is more like an in®nite thickness laminate. According to the classical
laminate theory, the shear stress is uniformly distributed in each layer.

Equation (3.8) is a very important result of the shear stress±strain relationship of the composite in the
microbuckling analysis. The shear strain and stress of the composite can then be de®ned as

tc
13 � G c

13

dwf

dx
� G c

13g
c
13, and gc

13 �
dwf

dx
�3:11�

respectively. From these de®nitions, shear strains are di�erent in composite, ®bers, and matrix, and their
relations are
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dwf

dx
ÿ cf � gf

13 < gc
13 �

dwf

dx
< gm

13 �
dwf

dx
� vfcf

1ÿ vf
�3:12�

But shear stresses are the same, i.e.,

tc
13 � tf

13 � tm
13 �3:13�

In fact, the shear strain of the composite can be de®ned alternatively by

gc
13 � vfgf

13 � �1ÿ vf �gm
13 �

dwf

dx
�3:14�

using eqns (3.2) and (3.5). This is the `rule of mixture' of shear strains in the ®ber and the matrix. If the
representative element of the composite is treated as the Timoshenko beam, we will have

dwc

dx
� dwf

dx
, and cc � vfcf � �1ÿ vf �cm � 0 �3:15�

using eqn (3.3). The second expression also means that no global bending is involved in the
representative element even though each single ®ber is in a ¯exural buckling state as shown in Fig. 2,
and, therefore, the analysis is only applicable for pure microbuckling.

Since there is not lateral extension or compression in the matrix, the normal distributed load can be
assumed as

qf � 0 �3:16�
The distributed moment due to surface shear stress is

mf � ÿH ftf
13 �3:17�

However, if we add shear stress acting in the matrix, but do not account for the matrix bending
sti�ness, i.e., Dm � 0, the moment in the representative element of the composite becomes

mc � ÿH ftf
13 ÿ 2Hmtm

13 � ÿ
ÿ
H f � 2Hm

�
tm
13 �3:18�

Since both the top face and bottom face of the representative element are in an antisymmetric position
of the periodic matrix±®ber±matrix structure, the distributed moment contributes no work during the
buckling perturbation because cc � 0, as shown by eqn (3.15).

The total potential energy of the representative element is

P � Pf �Pm � Df

2

�L
0

�
dcf

dx

�2

dx�
�
H f

2G f
� Hm

Gm

��L
0

�
G c

13

dwf

dx

�2

dx

ÿ P f

2

�L
0

�
dwf

dx

�2

dxÿ
�L
0

mccc dxÿMfcf jL0 ÿ V fwf jL0

� Df

2

�L
0

� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

d2wf

dx

�2
dx� H f � 2Hm

2

�L
0

G c
13

�
dwf

dx

�2

dx

ÿ P f

2

�L
0

�
dwf

dx

�2

dxÿMf
�1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

dwf

dx

����L
0

ÿ V fwf

����L
0

�3:19�
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where eqns (3.8) and (3.9) have been applied. According to the principle of minimum potential energy
the stationarity condition dP � 0 yields� �1ÿ vf ��G f ÿ Gm �

�1ÿ vf �G f � vfGm

�2
Df d4wf

dx4
�
�
P f ÿ H f

vf
G c

13

�
d2wf

dx2
� 0 �3:20�

� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

Df d2wf

dx2
ÿMf

�
d

dwf

dx

����L
0

� 0 �3:21�

(� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

�2
Df d3wf

dx3
�
�
P f ÿ H f

vf
G c

13

�
dwf

dx
� V f

)
dwf jL0 � 0 �3:22�

The last two equations represent the boundary conditions. The ®rst is the governing buckling equation
comparable to the Euler beam buckling equation.

The critical buckling load is

P f � H f

vf
G c

13 �
� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

�2
p2Dfÿ
L̂L

�2 �3:23�

where L̂ is the normalized e�ective length of the Euler beam. For example, L̂ � 1 for a simply
supported boundary condition, L̂ � 0:5 for a ®xed±®xed boundary condition, etc. If the ®ber length L is
large enough, the second term in eqn (3.23) is negligible and all boundary conditions will give the same
buckling load. The well-known general Rosen expression is then obtained as

sc
1 � v f P

f

H f
� G c

13 �3:24�

If G f is large or vf is small, eqn (3.24) will reduce to Rosen's eqn (2.1) according to eqn (3.10).
Experiments (Greszczuk, 1974; Jelf and Fleck, 1992; Fleck, 1997) have con®rmed that eqn (3.24) is
accurate when the matrix behaves in a linear elastic manner.

Based on a new generalized Timoshenko beam model above, we have now proven the general Rosen
formula and have obtained very important relationships given in eqns (3.8) and (3.11). Several papers
(Foye, 1966; Kulkarni et al., 1975; Yeh and Teply, 1988; Chaudhuri, 1991, etc.) have also shown that
G c

13 in eqn (3.24) is the same expression as in eqn (3.10). But in these works the shear deformation has
not been introduced through the Timoshenko beam theory and the shear stress±strain relationship in
eqn (3.8) and the de®nition of the shear strain in eqn (3.11) have not been applied. We will use eqns
(3.8) and (3.11) in our misalignment microbuckling analysis in the following section.

4. Microbuckling analysis for misalignment defects

An initial ®ber transverse misalignment wf
0 with arbitrary shape is assumed to be very small, and will

have no major e�ect on what we have developed above. The total potential energy of the representative
element is modi®ed as
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P � Df

2

�L
0

� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

d2wf

dx2

�2
dx� H f � 2Hm

2

�L
0

G c
13

�
dwf

dx

�2

dx

ÿ P f

2

�L
0

"�
dwf

dx

�2

�2dwf
0

dx

dwf

dx

#
dxÿMf

�1ÿ vf ��G f ÿ Gm�
�1ÿ vf �G f � vfGm

dwf

dx

����L
0

ÿ V fwf

����L
0

�4:1�

where eqns (3.8) and (3.9) have been applied. The stationarity condition dP � 0 now becomes� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

�2
Df d4wf

dx4
�
�
P f ÿ H f

vf
G c

13

�
d2wf

dx2
� P f d2wf

0

dx2
� 0 �4:2�

� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

Df d2wf

dx2
ÿMf

�
d

dwf

dx

����L
0
� 0 �4:3�

(� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

�2
Df d3wf

dx3
�
�
P f ÿ H f

vf
G c

13

�
dwf

dx
� P f dwf

0

dx
� V f

)
dwf

����L
0

� 0 �4:4�

The initial misalignment of the ®ber may be assumed to be sinusoidal wave, as

wf
0 � a0 sin

npx
L

�4:5�

where a0 is the maximum initial transverse displacement and n+1 is the node number of the sinusoidal
waveform. For the ®ber pinned at both ends, a sinusoidal solution satis®es boundary conditions and is
assumed as

wf � an sin
npx
L

�4:6�

where an is the maximum increment of transverse displacement corresponding to the mode shape. The
®ber buckling load is

P f � an
an � a0

"
H f

vf
G c

13 �
� �1ÿ vf ��G f ÿ Gm �
�1ÿ vf �G f � vfGm

�2
Df

�
np
L

�2
#

�4:7�

If the second term is negligible, e.g., for large L, a simple relation between compressive stress and
transverse displacement is obtained as [similar to (A.30)]

sc
1 �

Ed
1s

f
1

E
� an

an � a0
Gc

13 �4:8�

Comparing eqn (4.8) with sc
1 � G c

13 in eqn (3.24), there is a knockdown factor of less than 1. However,
a buckling stress can be given by eqn (4.8) only when the amplitude an is very large, i.e., an � a0, and it
will then be sc

1 � G c
13. If s

c
1 � G c

13, the solution of eqn (4.2) will never result in buckling.
An additional failure criterion has to be applied to (4.8) if the matrix properties are involved.

According to eqn (3.8), the maximum shear stress in matrix can be written as

tm
13jmax � G c

13

����dwf

dx

����
max
� an

np
L
G c

13 �4:9�
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Therefore, eqn (4.8) can be rewritten as a failure expression as

sc
1 �

tc
f

gc
f � f0

� G c
13

1� f0=g
c
f

�4:10�

where

tc
f � tm

13jmax � G c
13g

c
f ; gc

f � an
np
L
; f0 � a0

np
L

�4:11�

Note that f0 is de®ned as the maximum angle of the initial ®ber misalignment.
Composite failure can be triggered by di�erent mechanisms. Three models have been proposed as: (1)

matrix yielding in a perfectly plastic matrix (Argon, 1972; Budiansky, 1983); (2) ®ber±matrix interface
debonding (Lanir and Fung, 1972); (3) matrix microcracks (Schapery, 1995). Note, for example, that
letting tc

f � kc in eqn (4.10) will give an expression identical to eqn (2.4) (Budiansky, 1983) for a
perfectly plastic composite. A general relation is obtained as

sc
1 �

kc

gc
y � f0

� G c
13

1� f0=gc
y

<
G c

13

1� f0=gm
y

�4:12�

since gc
y�kc=G c

13 < gm
y from eqn (3.12).

Obviously, matrix deformation during buckling perturbation needs to be considered to lead to a more
rigorous prediction (Chung and Testa, 1968; Stief, 1987). One way to modify the composite buckling
analysis is to add the matrix bending sti�ness. This will result in a global beam buckling analysis, i.e., a
macrobuckling model, which will be discussed in the next section.

5. `Shear hinge' analysis

Once a kink band is triggered, the kink band section can be considered to play a role similar to an
elastoplastic hinge in the plastic buckling analysis of beams. We may call the kink band section a `shear
hinge'. The reason is that the buckling state is in a `transverse shear induced buckling' mode instead of
a ¯exural buckling mode, provided that shear stress reaches a critical value. Before we discuss the `shear
hinge', a review of the method of split rigidities will be appropriate.

The method of split rigidities was proposed by Bijlaard (1951) for estimating the critical buckling
loads of sandwich panels. The method has lately been extended to static and vibration problems by Hu
(1984). The method of split rigidities is a very intuitive one for the Timoshenko beam analysis. There
are two independent variables: w and c, where w is the lateral displacement of the beam neutral line,
and c is the angular rotation of the beam planar cross section. If the shear sti�ness is assumed to be
in®nitely large, the buckling load is reduced to the Euler critical load for the corresponding boundary
conditions as

Pe � p2Dcÿ
L̂L

�2 �5:1�

If the bending sti�ness is assumed to be in®nitely large, the shear buckling load is simply (Hu, 1984)

Ps � G c
13A

a
�5:2�
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The method of split rigidities assumes that the global buckling load can be given by

1

P
� 1

Pe

� 1

Ps

�5:3�

Equation (5.3) is an exact solution of the buckling load in the Timoshenko beam theory. It is to be
noted that, as shown by Hu (1984) by an energy method, a solution obtained by the split rigidity
method forms an upper bound to the exact solution of the buckling load. However, when the
Timoshenko beam theory is used, eqn (5.3) becomes the exact solution.

Alternatively, the Euler critical stress is de®ned as

se � Pe

A
�5:4�

and the shear critical stress is de®ned as

ss � Ps

A
�5:5�

An expression for the critical stress s can now be written as

1

s
� 1

se

� 1

ss

�5:6�

If the Euler critical stress is much larger than the critical shear stress, then

s � ss � G c
13

a
�5:7�

As shown by Chou and Kelly (1980), eqn (5.7) is equivalent to Rosen's microbuckling shear mode when
the shear stress distribution is accounted for. We propose that the method of split rigidities can be
naturally extended to the microbuckling analysis.

By virtue of the method of split rigidities, only the shear buckling mode needs to be discussed here if
the total length of the beam, L, is relatively short. A special shear hinge is designed to simulate the kink
band mechanism in Fig. 3. It is assumed that the bending sti�ness of the beam is in®nitely large and
therefore only the shear deformation is allowable in the beam. The instability criterion can be obtained

Fig. 3. `Shear hinge' simulating a kink band in a representative element with a misaligned compressive load.
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for a small shear perturbance of the inclination in Fig. 3. For a force balance in the vertical direction,

Py1 � Py2, or y � y1 � y2 �5:8�

for small y1 and y2. The rotation of the neutral line in the section L0, i.e., the shear strain in the kink
band, is de®ned as

g � L1y1 � L2y2
L0

� Lÿ L0

L0
y �5:9�

If the beam length L is much larger than the kink band section L0, the shear strain, y, in the sections L1

and L2 must be much smaller than g in the kink band. The kink band section may then be viewed as a
`shear hinge' (similar to `plastic hinge' in bending of beams).

Since we assume the bending sti�ness to be in®nitely large, any bending e�ect can be excluded from
the analysis. A torque moment due to the shear perturbance g in the `shear hinge' section L0 is found as

Mg � L0At�g� �5:10�

as the `shear hinge' acts as a rotary spring. If the shear stress distribution is accounted for, the moment
is modi®ed as

Mg � L0A
t�g�
a

�5:11�

where the shear stress t�g� is considered as an average value in the beam theory.
In a perfectly aligned ®ber composite and load system, a state of static equilibrium of the `shear

hinge' for a given shear perturbation only gives

Mg � L0P sin g �5:12�

From eqns (5.10) and (5.12) the critical shear buckling stress for elastic case is found to be

s � P

A
� t

g
� G c

13 �5:13�

where sin g � g is used. If eqn (5.11) instead of (5.10) is used, the expression will be the same as eqn
(5.7). Thus, the Rosen formula is recovered.

For a beam with a small initial misalignment f0 and a load system with a small misalignment f1, the
equilibrium state gives

Mg � L0P sin
ÿ
g� f0 � f1

� �5:14�

This buckled state in the `shear hinge' is then represented by

s � t�g�
sin

ÿ
g� f0 � f1

� �5:15�

The expression is similar to that by a simple model consisting of a vertical rigid rod su�ering some
initial deviation and having a rotation-constrained spring, for example, in the comprehensive overview
by Budiansky (1974). This kind of buckling has been called snap buckling, and the critical stress is very
sensitive to imperfections f0 and f1. Similar to the previous section, the critical stress may be written as
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s � tc
f

gc
f � f0 � f1

�5:16�

for small angles. This expression looks similar to eqn (4.10). However, the interpretation is, somewhat,
di�erent. Here f0 is the maximum inclination of the beam, and f1 is the misinclination in the loading
system. Now we have extended the Argon±Budiansky kinking stress expression including misalignments
of both ®bers and loading system. Wisnom (1990) seems to be the ®rst to discuss the e�ect of a uniform
misalignment angle between the ®bers and loading axis, and he deduced eqn (2.4) by regarding a
unidirectional layer of straight ®bers aligned at an angle to the loading axis.

6. Kink band angle

It is interesting to compare the results above to the kinking failure mechanism of a perfectly plastic
composite as discussed by Argon (1972). His argument is that if the interlaminar shear strength
criterion, k � scf0, is reached, an additional rotation f will develop and f0 is then interpreted as the
initial misalignment of ®bers. However, as we will discuss in the next section, the lamellae sliding and
rotating depend on the matrix yielding condition which is dependent on both the axial normal
compressive stress and the shear stress due to the initial misalignment of ®bers. In an extreme case,
assuming perfectly straight ®bers, a simple relation for homogeneous matrix materials from the Tresca
yield criterion is

sm
y �

2km

sin �2o � �6:1�

where km is the shear yield stress of the matrix and o is the slip line angle. Therefore, sm
y achieves a

minimum value if o is 458. There is no reason to require that o has the same value as that of the initial
misalignment of ®bers. In fact, as mentioned in the Introduction section, the axial compressive strain at
the point of kink band formation is about 1%, which is of the same order of magnitude as a typical
shear yield strain of a polymetric matrix. Furthermore, for a transversely isotropic material loaded
normal to the isotropic plane, the planes of maximum shear stress and strain coincide and lie at 458 to
the loading axis. It has been argued that it might be expected that the kink band in unidirectional
composites would lie along a plane at b � 458 since the kink bands resemble shear bands and are
therefore associated with large shear deformations (Schultheisz and Waas, 1996). However, experiments
have shown that this argument generally does not hold. If kinking is a consequence of purely elastic
microbuckling, one would expect the kink band boundary to lie in the plane of the highest bending
stress in the ®bers, i.e., b � 0, as in Fig. 2. This is generally not true either. We propose a new theory
for the kink band angle in the following.

If the matrix yields, the ®ber buckling instability will be induced by a transverse perturbation, as we
have discussed above. However, a localized matrix yielding does not necessarily mean composite failure
because ®bers may stop matrix sliding. Obviously, if matrix sliding induces instability in the neighboring
®bers, this instability e�ect must propagate through the whole cross section of the strip, as shown in
Fig. 4, and then a slight misalignment can trigger kink band formation. Otherwise, the slip system will
not evolve. From this point of view, a formula for kink band angle can easily be derived. In Fig. 4 the
matrix is assumed to slide at the angle o , and the ®ber is in ¯exural buckling. We also assume that the
elastic strain of the matrix is neglected, and the ®ber is transversely inextensible and shear sti�. If only
the initial kink state is considered for, i.e., f � 0, the average angle of the slip system is written as
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tan b � 2Hm

H f � 2Hm
tan o � �1ÿ vf � tan o �6:2�

Our hypothesis is that the kink band angle, b, is governed by the onset of the kinking state, therefore,
eqn (6.2) does not involve any post-kink process. For a composite comprising perfectly straight ®bers
and a plastic matrix, o � 458, and the kink band angle is simply

b � arctan �1ÿ vf � � arctan �vm � �6:3�

If vf is small, b will be close to 458. In polymer matrix composites with very low ®ber volume fraction,
matrix yielding and fracture do occur in a band oriented at about 458 (Fleck, 1997). This failure
mechanism is called shear banding, and is essentially equivalent to kink band failure (Christo�ersen and
Jensen, 1996). In most continuous ®ber composites matrix volume fraction lies between 0.4 and 0.6.
Estimated angles from eqn (6.3) thus range from 22±318, and the prediction is reasonably good for most
experimental observations (Moran et al., 1995; Schultheisz and Waas, 1996). In the cases of ®ber
misalignment and notch stress concentration, there will be an additional transverse shear stress in the
prebuckling state. Or, if the ®ber elastic microbuckling occurs ®rst, additional transverse shear stress will
be induced before kink band formation. In these cases o < 458 and eqn (6.3) will generally give an
upper bound to the kink band angle.

Direct experimental evidence to support this analysis comes from compression tests on the composite
which has 60% volume fraction of IM7 carbon ®bers and a relatively ductile PEEK matrix (Moran et
al., 1995). These authors found distinctly di�erent deformation in various stages of the kinking process.
In the incipient kinking stage kink band growth is notch sensitive where inelastic behavior is
characterized by plastic ¯ow of the matrix in a small region ahead of the specimen notch, and the kink
band angle, b, lies between 10 and 158. However, in the applied peak stress stage the narrow band
advances across the rest of the specimen and the dominant kink band is driven by the remote stresses.
In this stage the band angle is signi®cantly steeper than that in the incipient kinking stage, and b was
measured to be about 228 as predicted accurately by eqn (6.3). Thereafter, the kink band spreads
laterally into the specimen by band width broadening and the kink band angle remains unchanged.

We shall make a few further remarks about the new analysis presented above. Equation (6.2) is a
simple geometrical relation for the onset of a kink band formation, and no properties of the composite
constituents except ®ber volume fraction are involved. Fiber bending break in experiments is a result of

Fig. 4. A model of kink band caused by matrix sliding and ®ber buckling.
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the ®ber post-bucking behavior, and should not be a relevant issue to kink band angles. Shear plastic
deformation of the matrix is a requirement only for the kink band initiation, and therefore assumption
of a perfectly plastic composite is not necessary. This mechanism also implies that a brittle matrix may
not induce a kink band, and it may explain why little experimental evidence is available for kinking
mechanism in ceramic matrix composites. In eqn (2.6) by Budiansky (1983), sc

1 � Gc
13 ÿ E c

3 tan2 b the
kink band angle is related to the axial compressive stress in the composite. On the other hand, this
equation could be considered as a modi®cation to sc

1 � G c
13 in elastic microbuckling, if one ®nds a way

to determinate b independently such as in eqn (6.2).

7. Discussion

As we have shown in Sections 3±5, both the Rosen formula and the Argon±Budiansky formula can
be developed by a microbuckling model and the method of split rigidities. In the generalized
Timoshenko beam theory, the shear strains in the matrix and ®ber are assumed to be uniform. This
uniformity assumption leads to the `inverse rule of mixtures' of the shear modulus [eqn (3.10)] which
can be proven to be the socalled Reuss lower bound of the e�ective shear modulus by the theorem of
minimum complementary energy (e.g., Parton and Kudryavtsev, 1993). This means that the generalized
Timoshenko beam theory gives the ®rst-order approximation of the exact solution. According to higher
order models (Chung and Testa, 1968; Niu and Talreja, 1998), the shear strain uniformity is a
reasonable assumption in the shear mode buckling for practical ®ber reinforced composites. It is noted
that three shear strains have been de®ned separately for composite, ®bers, and matrix in the
macrobuckling model [eqn (3.12)] besides smearing out ®bers and matrix in the microbuckling model.

In the microbuckling model, eqn (4.10) is based on the assumption that the composite is linearly
elastic. As we have mentioned above, if tc

f � kc, eqn (4.10) is identical to eqn (2.4) (Budiansky, 1983) for
a perfectly plastic composite. In fact it is not necessary to limit this analysis to a perfectly plastic
composite. We may extend it to a composite of bilinear response in shear using a di�erent
interpretation. A typical bilinear shear response of a strain-hardening composite with initial shear
modulus G and tangent shear modulus G '(0<G '<G ) after yielding is shown in Fig. 5. At the yield
point gy there is a discontinuity in the tangent modulus. Let us introduce a short curve to smooth out
the yield point. The following expression is assumed to hold within the short curve.

Fig. 5. Shear stress±strain curve of a shear strain hardening composite under compression.
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s1 � t
g� f0

�7:1�

The necessary condition for a maximum s1 is

ds1
dg
� d

dg

� t
g� f0

�
� 0 �7:2�

or equivalently,

dt
dg
� tf

gf � f0

�7:3�

At the tangent point, as shown in Fig. 5, s1 will achieve its maximum value, which is given by eqn
(4.10). In the limiting case, there is no di�erence between tf and k, and we will get eqn (2.4). An
additional constraint for this analysis is

G 0 E tf

gf � f0

�7:4�

Otherwise, eqn (4.10) will not give the maximum value. This argument can also be applied to eqn (5.16).
However, a general shear strain-hardening composite needs to be assumed in the method of split
rigidities. Procedures for ®nding snap buckling are explained by Budiansky and Fleck (1993), Harberle
and Matthews (1994), Soutis and Turkmen (1995) and Daniel et al. (1996).

A more complete analysis of the kinking mechanism must include the e�ect of axial stress on
transverse shear stress±strain relationship. For example, Hayashi (1985) found that shear strain±stress
relation of epoxy resins depends on the compressive stress. Unfortunately, this e�ect has not been fully
investigated. In Budiansky (1983) axial compressive stress is not included in the matrix yield condition
for a perfectly plastic matrix. Recently Budiansky and Fleck (1993) have concluded that the assumption
of axially rigid ®bers is well justi®ed in their kinking analysis. However, more recently, experimental
results (Soutis and Turkmen, 1995; Kyriakides et al., 1995; Daniel et al., 1996; Vogler and Kyriakides,
1997; Kyriakides and Ru�, 1997; and Soutis, 1997; Moran and Shih, 1998) showed that the initiation of
a kink band was sudden and occurred at axial strain levels of around 1%. Interestingly, the shear yield
stress of a polymeric matrix is also close to this strain value (Jelf and Fleck, 1992). This means that the
axial normal compressive strain is at least of the same order as the perturbed shear strain when the kink
band occurs, and the axial compressive stress plays a signi®cant role in the formation of a kink band.

Therefore, it seems a yield criterion along the lines suggested by Hahn (1987) and Williams and
Cairns (1994) should be applied. No accounting for a possible shear stress concentration the Tresca
criterion in a two-dimensional model gives,

kc � tc
f � tm

f �
�����������������������������
�km �2ÿ1

4

ÿ
sm
1

�2q
< km �7:5�

The von Mises criterion gives the same expression with 1/3 instead of 1/4. We may note that the
interfacial shear strength, kc, is generally not a material constant. Using the axial isostrain condition to
express the compressive stress in the matrix in terms of the composite axial stress and inserting it in eqn
(7.5) and on substitution in eqn (4.10) gives,

sc
1 �

G c
13

1� G c
13f0

� ���������������������������������������
�km �2ÿ1

4

�
Emsc

1

E c
1

�2
s �7:6�
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Equation (7.6) is generally not easy to apply. However, from the Tresca criterion, if

sc
1 � 2

E c
1k

m

Em
� E c

1s
m
y

Em
� sc

y �7:7�

eqn (7.5) simpli®es as

kc � tc
f � km �7:8�

Equation (7.6) then becomes

sc
1 �

km

gc
y � f0

�7:9�

This means that eqn (7.9) can only give an accurate kinking stress if the axial stress is much less than
the yielding stress. The condition in eqn (7.7) is derived using the Tresca criterion, and it may not be a
good estimate to use in eqn (7.6). Alternatively, eqn (7.6) can be rewritten as

sc
1 �

km���������������������������������������������ÿ
gc

y � f0

�2�1
4

�
Em

E c
1

�2
s �7:10�

if Em=E c
1 is very small, eqn (7.10) reduces to (7.9). A rough estimate is to let gc

y � f0 be 0.05 (about 38
in Jelf and Fleck, 1992), and

E c
1

Em
� vf E

f

Em
> 22 �25 in the von Mises criterion� �7:11�

to keep an estimation error in eqn (7.9) less than 10%. Under this condition, the rigid-®ber assumption
(Budiansky and Fleck, 1993) is acceptable.

Equations (2.4) and (7.9) cannot be compared directly because kc and km are two di�erent material
measurements. In eqn (2.4) kc is the interfacial shear strength that may not be a material constant, and
in eqn (7.9) km is the shear yield stress of the matrix. In the literature, however, this di�erence is not
clearly recognized (e.g., Jelf and Fleck, 1992). Under the condition of eqn (7.7), the meanings of kc and
km may be only slightly di�erent. However, gc

y and gm
y are always distinguishable. With eqn (7.7),

yc
y � �1ÿ uf�gm

y using eqn (3.14) for a composite with shear-sti� ®bers. Therefore,

km

gm
y � f0

< sc
1 �

km

gc
y � f0

<
km

f0

�7:12�

Generally speaking, Argon's result (1972) is always an upper bound to eqn (7.9), and Budiansky's result
(1983) is a lower bound if the interfacial shear strength of the composite is interpreted as the shear yield
stress of the matrix.

In another extreme case, when ®bers are nearly perfectly aligned, gc
y � f0 must be very small.

Equation (7.10) then becomes

sc
1 � 2

E c
1k

m

Em
� E c

1s
m
y

Em
�7:13�

which relates the composite compressive strength to the matrix yield stress according to the Tresca
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criterion. This is consistent with the theory of shear instability of matrix in Section 6. We also need to
point out that the assumption of axially rigid ®bers is not justi®ed if gc

y � f0 is very small.
The ®ber±matrix interfacial debonding is another issue to be considered here. According to Lanir and

Fung (1972), assuming the bond strength to be zero, separation will occur if the normal stress in the
interface vanishes. Therefore, if Poisson's ratio nf < nm, separation will occur in compression. Poisson's
ratio nf is di�cult to measure, and no experimental data for this property are available in the literature.
Most often nf � 0:3 is taken. Poisson's ratio of the matrix in the elastic regime can di�er depending on
the polymeric material, but it will always approach 0.5 when the matrix yields. A rough assumption is
that the interfacial debonding will exist if the matrix yields in compression. With this hypothesis, the
analysis presented above for matrix yielding will also be valid for the case of interfacial debonding.

8. Conclusions

As a general conclusion of the analyses presented in this paper it may be stated that in the
compressive failure of ®ber reinforced composites, which is complex and multi-modal, the shear
deformation of ®bers and matrix play key roles. From the microbuckling and kink band analyses
performed here, with emphasis on the shear behavior, following results may be summarized.

In the elastic microbuckling analysis, a new shear deformation beam model has been developed for a
two-dimensional periodic matrix±®ber±matrix, and the general Rosen microbuckling formula in eqn
(3.24) has been proved as a consequence. In the elastic±plastic microbuckling analysis accounting for the
®ber misalignment waviness, the Argon±Budiansky kinking formula has been obtained. This analysis
uni®es the microbuckling and kink band analyses into a single model. By virtue of the assumed uniform
shear strains in the model, the shear modulus of the composite follows the `inverse rule of mixtures',
and is the Reuss lower bound of the e�ective shear modulus.

In the macrobuckling model, a `shear hinge' has been proposed to simulate the kink band based on
the method of split rigidities. Both the Rosen formula and the Argon±Budiansky formula have been
shown to result also from this model. It has been further shown that not only initial ®ber misalignment
but also misinclination of loading are important parameters in the kinking analysis. The analysis helps
explain that even in a composite with perfectly straight ®bers a kink band is possible.

A new theory of shear instability of ®ber reinforced composites in compression has been developed
based on the mechanism of matrix shear sliding (plastic) deformation and ®ber microbuckling. Unlike
other theories that treat the ®ber±matrix system as an equivalent anisotropic medium, this theory
explicitly includes the constituent properties. A simple expression for the kink band angle in terms of the
®ber volume fraction has been derived, and it may be a reasonable upper bound estimate.

In the micromechanical model it has been shown that the interfacial shear strength of the composite is
not a material constant, if the axial compressive stress cannot be neglected. A modi®cation has been
introduced to the Argon±Budiansky kinking formula based on the yield criterion of the matrix
combining axial compressive stress and transverse shear stress. The Argon±Budiansky kinking formula,
with a di�erent interpretation, has been shown to result from this model having initial ®ber
misalignment if the axial compressive stress is relatively small of if the ratio of ®ber modulus to matrix
modulus is very large. For a nearly perfect system, the kinking compression strength has been shown to
relate to the matrix yield stress according to the Tresca criterion.

Appendix

For the two-dimensional model shown in Fig. 1(a) or (b), due to the symmetric or antisymmetric
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geometry, a representative element consists of one layer of ®ber (height H f) bounded by the two
adjacent matrix materials (height Hm). The instability is predicted by the governing equation of the ®ber
considering perturbations about the equilibrium state. The buckling equation of the ®ber is

Df d4wf

dx4
� d

dx

�
P f dwf

dx

�
ÿ qf � dmf

dx
� 0 �A:1�

A.1. Extensional mode

For Fig. 1(a) the Rosen (1965) assumptions in extensional mode are mf � 0, i.e., no shear stress
moment, and

qf � ÿkmwf � ÿ2E
m

Hm
wf �A:2�

where km is the sti�ness of the matrix (as the elastic foundation). Thus, Rosen's extensional mode is for
a beam embedded into the Winkler foundation. For the ®ber pinned at both ends, the general solution
of eqn (A.1) is

wf � an sin
npx
L

�A:3�

and the buckling load is

P f � p2E fI f

L2

�
n2 � 2EmL4

n2Hmp4E fI f

�
�A:4�

If L is long enough, n is considered to be a continuous variable, and minimization of P f with respect to
n2 yields

n2cr �
�����������������������
2EmL4

Hmp4E fI f

s
�A:5�

and

P f
cr � 2

���������������
kmE fI f
p

� 2

��������������������
2EmE fI f

Hm

r
�A:6�

If the compressive force in the matrix is negligible, the critical compressive stress of the composite for
extensional mode in the longitudinal direction is as follows (Rosen, 1965)

sc
1 � vf P

f

H f
� 2

vf

H f

��������������������
2EmE fI f

Hm

r
� 2vf

�������������������
vfEmE f

3�1ÿ vf �

s
�A:7�

If the boundary constraint at one of the ®ber end is free, the ®ber can be treated as a semi-in®nite beam
(or an in®nite beam). The buckling stress becomes

K. Niu, R. Talreja / International Journal of Solids and Structures 37 (2000) 2405±2428 2423



sc
1 � vf

�������������������
vfEmE f

3�1ÿ vf �

s
�A:8�

which is only one-half of the value obtained from eqn (A.7).
It is worth point out that Rosen's analysis for the extensional mode neglects shear deformation in the

matrix because mf � 0 is assumed. In fact, if the buckling perturbation normal displacement of the
matrix um is assumed as a function of x only, on either side of the ®ber, the shear strain of the matrix
just near the interface of the ®ber is

gm
13 �

@wm

@x
� @u

m

@z
� @wm

@x
� @wf

dx
�A:9�

Also, traction is continuous on the interface,

tf
13 � tm

13 � Gmgm
13 � Gm dwf

dx
�A:10�

For the extensional mode the distributed moment in eqn (A.1) due to surface shear stress is

mf � ÿH ftf
13 �A:11�

The buckling equation of the ®ber now becomes (Xu and Reifsnider, 1993, 1994)

Df d4wf

dx4
� �P f ÿ GmH f � d2wf

dx2
� kmwf � 0 �A:12�

and the critical stress

sc
1 � vf

242
�������������������
vfEmE f

3�1ÿ vf �

s
� Gm

35 �A:13�

which predicts a higher critical composite stress compared to eqn (A.7). The compressive force in the
matrix can be included by introducing the `rule of mixtures' as follows

sc
1 �

vfE f � �1ÿ vf �Em

E f

0@2
�������������������
vfEmE f

2�1ÿ vf �

s
� Gm

1A �A:14�

A.2. Shear mode

Since all ®bers deform exactly the same way in the shear mode, as shown in Fig. 1(b), the composite
constituent displacement ®elds are uniform and antisymmetric with respect to the x coordinate. A
representative element of the composite is similar to the extensional mode. Since there is no lateral
extension or compression in the matrix, a normal distributed load can be assumed as [comparing with
eqn (A.2)]

qf � 0 �A:15�
If the ®ber shear deformation is negligible, the matrix shear strain is as (in Fig. 2)
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gm
13 �

@wm

@x
� @u

m

@z
� dwf

dx
� H f

2Hm

dwf

dx
� 1

1ÿ vf

dwf

dx
�A:16�

Unlike non-uniform shear strain in the extensional mode, gm
13 is uniformly distributed in the whole

matrix in the lateral direction. Substitution of eqn (A.16) and eqn (A.11) into eqn (A.1) yields the
buckling equation of the ®ber in the shear mode as

Df d4wf

dx4
�
�
P f ÿ GmH f

1ÿ vf

�
d2wf

dx2
� 0 �A:17�

Assuming L is very large, the critical compressive stress is (Hahn and Williams, 1986)

sc
1 � vf P

f

H f
� vf

1ÿ vf
Gm �A:18�

If we add shear stress acting in the matrix, but do not account for the matrix bending sti�ness, i.e.,
Dm � 0, the moment in the representative element of the composite becomes

mc � ÿH ftf
13 ÿ 2Hmtm

13 � ÿ
ÿ
H f � 2Hm

�
tm
13 �A:19�

or, as in an alternative treatment (Sun and Jun, 1993)

mf � ÿH ftf
13 �A:20�

and

qf � 2Hm dtm
13

dx
� 2

HmGm

1ÿ vf

d2wf

dx2
�A:21�

Now the buckling equation can be rewritten as

Df d4wf

dx4
�
�
P f ÿ GmH f

vf�1ÿ vf �
�

d2wf

dx2
� 0 �A:22�

For the ®ber pinned at both ends, the critical buckling load is

P f � H f

vf�1ÿ vf �G
m � p2E fI f

L2
�A:23�

For the ®ber clamped at both ends, the critical buckling load is

P f � H f

vf�1ÿ vf �G
m � 4p2E fI f

L2
�A:24�

For the ®ber free at both ends, the critical buckling load is

P f � H f

vf�1ÿ vf �G
m �A:25�

It is easy to see from eqns (A.23)±(A.25) that if the ®ber length L is large enough all three boundary
conditions will give the same buckling load. Now the well-known Rosen's solution (1965) is obtained as
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sc
1 � vf P

f

H f
� ÿ 1

1ÿ vf
Gm �A:26�

A.3. Misalignment defects

An initial transverse ®ber misalignment wf
0 is assumed to be

wf
0 � a0 sin

npx
L

�A:27�

where a0 is assumed to be very small, and has no major e�ect on what we have developed above. The
buckling equation of the ®ber is modi®ed as

Df d4wf

dx4
� d

dx

�
P f d

ÿ
wf � wf

0

�
dx

�
ÿ qf � dmf

dx
� 0 �A:28�

where wf is interpreted as an increment of the transverse displacement.
In the shear mode, a particular solution in eqn (A.28) is assumed as eqn (A.3) for the ®ber pinned at

both ends, and then

P f � an
an � a0

"ÿ
H f � 2Hm

� Gm

1ÿ vf
� E fI f

�
np
L

�2
#

�A:29�

Again, if the second term is negligible, a simple relation is obtained as

sc
1 �

E c
1s

f
1

E f
� an

an � a0

Gm

1ÿ vf
� an

an � a0
G c

13 �A:30�
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